New Methods for Reasoning Towards Posterior Distributions Based on Sample Data
نویسندگان
چکیده
منابع مشابه
Fitting Beta Distributions Based on Sample Data
Construction operations are subject to a wide variety of fluctuations and interruptions. Varying weather conditions, learning development on repetitive operations, equipment breakdowns, management interference, and other external factors may impact the production process in construction. As a result of such interferences, the behavior of construction processes becomes subject to random variatio...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولComparing two methods for bootstrapping posterior distributions ∗
Two related methods exist for sampling from posterior distributions of the MLE with a known prior Newton & Raftery (1994) [8], Efron (2011) [4]. We compare them by examining asymptotic Edgeworth expansions of their pivotal distributions. The result is that Newton & Raftery (1994) is 2nd order consistent to the posterior distribution with prior proportional to the Fisher Information, under some ...
متن کاملSample Size Determination Using Posterior Predictive Distributions
A statistical model developed from scientific theory may “fail to fit” the available data if the scientific theory is incorrect or if the sample size is too small. The former point is obvious but the latter is more subtle. In the latter case, the hypothesized model may fail to fit in the sense that it is viewed as unnecessarily complicated, and so the investigators settle upon a simpler model t...
متن کاملLarge-sample Bayesian posterior distributions for probabilistic sensitivity analysis.
In probabilistic sensitivity analyses, analysts assign probability distributions to uncertain model parameters and use Monte Carlo simulation to estimate the sensitivity of model results to parameter uncertainty. The authors present Bayesian methods for constructing large-sample approximate posterior distributions for probabilities, rates, and relative effect parameters, for both controlled and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Mathematical Statistics
سال: 1966
ISSN: 0003-4851
DOI: 10.1214/aoms/1177699517